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ABSTRACT 

Rigorous bounds are derived for the effect of round-off errors in variational cal- 
culations for eigenvalues of linear operators. These bounds are simple to compute. 
They are used to derive an alternative variation principle which minimizes the effect 
of round-off errors. A numerical example of the use of the techniques is given. 

I. INTRODUCTION 

2, .N are Hermitian operators in and # an element of a Hilbert space R, and 
N is positive-definite. 

We consider in this paper the variational calculation of the eigenvalues h of SP 
with respect to N : 

[se - hJv-]y5 = 0 (1) 

The Rayleigh-Ritz variational principle for this eigenvalue problem is 

For a trial function x containing only linear parameters a, 

it is well known that (2) reduces to the M x M eigenvalue problem 

[H - h,N]a = 0, 
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(2) 

(3) 

(4) 
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where H, N are A4 x M Hermitian matrices with elements 

and a is the M-vector of amplitudes ai . Further, it is well known that if Z has 
a smallest eigenvalue A, , then the eigenvalues of (4) are upper bounds to the eigen- 
values of 2P, 

hi d &i Y (6) 

where (6) supposes both sets of eigenvalues to be in algebraically increasing order. 
It is also a familiar phenomenon that this Rayleigh-Ritz procedure, and similar 

variational procedures for other linear operator equations such as the Kohn and 
related principles for scattering states, are subject in practice to apparently severe 
round-off errors. The result (4) and the bound (6) both assume that the arithmetic 
involved is carried out exactly; in particular, that the inner products (5) are known 
exactly. In most practical calculations this is not so; the matrix elements of H and 
N are calculated to finite precision, which is limited either by the word length of 
the computer, or by the numerical integration techniques available. Moreover, 
for large M, the observed errors in A, may be much greater than the individual 
errors in the inner products, and the bound (6) may be violated. This loss of accu- 
racy is disastrous if it is not recognized; when it is recognized, it is either countered 
by double or multiple precision working, or by increasing the accuracy of the 
numerical integrations if such are involved. Both of these palliatives, and especially 
the latter, are time-consuming, and it is often the round-off errors, rather than any 
upper limit in the number of terms M that can be handled, which determines the 
final accuracy of a calculation. 

In this paper we analyze these round-off errors in detail. We first derive a 
rigorous bound on the magnitude of the error in A, due to the finite accuracy of 
H and A? This bound involves only readily available quantities, and is easily 
computed at the same time as A,; its existence gives a simple method of recognizing 
and quantizing possible error buildup. The error bound is then combined with the 
inequality (6) to form a rigorous bound on the eigenvalues of 2, valid even in 
the presence of roundoff errors. 

In Section III we look further at these bounds. In the presence of round-off 
errors, the inequality (6) is largely academic, and the modified bounds of Section II 
are the only relevant ones. But the procedure embodied in (4) is designed to 
minimize the bound (6). We therefore discuss in this section a procedure designed 
to minimise the modified bound, and hence to get the best possible final result 
from a calculation of H, N of given accuracy. The resulting algorithm, and the 
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simpler bounds of Section II, are illustrated by an example in Section IV. Finally, 
an extension of the method to scattering states given in Section V. 

II. BOUNDS ON THE EFFECT OF TRUNCATION ERRORS IN H AND N 

The usual Rayleigh-Ritz procedure leads to the calculation of the eigenvalues h, 
of (4), 

[H - X,N]a = 0, 

where H, N are the Hamiltonian and normalization matrices (5). In fact however 
we calculate the eigenvalues A, of the approximate equation 

[H + h - X,(N + n)]b = 0 (7) 

where h, n are the error matrices of the computed H, N. In any calculation the 
final calculated eigenvalue has two sources of error. First, equation (7) is not in 
practice solved exactly; and second, h and it are not null, so that A0 f A,, . The first 
error may always be made as small as is wished by soling (7) to multiple precision. 
The time taken to do this is usually negligible compared with the time required 
to improve the accuracy of the inner products (5); and hence, the second source 
of error usually dominates. If we ignore the first source, we can compare the exact 
eigenvalues A, , A, as follows. We write (5) and (7) in the form 

where 

[R - X,Z]al = 0, 
[R + C - &Z]bl = 0, (8) 

C = N-l/2@ - &j-1,2, @a) 
al = NlPa bl = NlPb. 

These equations express A, , A, as the eigenvalues of the Hermitian matrices $Z, 
B + C, respectively. We then have an immediate bound for the change hot - Ari 
in the i-the eigenvalue of R induced by the perturbing matrix C (Ref. [l]) 

I hi - hui I d II C II d II N-“2 11”~11 h II + I L I II n III. (9) 

In Eq. (9), ]I A (/ denotes a norm of the matrix A (Ref. [2]). For convenience, the 
norm used in the numerical work of this paper is defined in the appendix. Equa- 
tion (9) yields in principle a bound on the round-off errors induced in the eigen- 
values A, . We consider first a special case. 
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A. Orthogonal Expansion of the Trial Function 

If the expanding functions $i in (3) are orthonormal,r the normalisation matrix 
reduces to the unit matrix, and we have 

N = I, n = 0, 

I A, - 4, I e II h Il. (10) 

This is a very satisfactory bound. First, it is simple to compute, since bounds 
on 11 h (/ follow trivially if we know either the relative or the absolute accuracy of 
the inner products (5). Second, it is as small as one might reasonably hope to 
achieve. If the absolute error in any element of H is less than E we have for an 
A4 x M matrix 

I hij I < 6; II h /la < ME (11) 

and we can hardly hope to do better than this. 

B. The general case 

If the expansion used is not orthogonal, the situation is less satisfactory. The 
bound (9) now contains the (unknown) matrix N. We first remove this dependence 
by writing 

P=N+n, 
[H - A,(P - n)]a = 0, 02) 

Cl = p-lP(h - hwn)p-1/2, 

where, as before, we derive the bound 

I A, - A, I < II Cl II G II P-l” llz~ll h II + I A, I II n II>. (13) 

If we know the sign of AP we may rewrite (13); for instance, if X, < 0, we 
have the bound 

x < A, + II P-1’2 II2 II h II 
p ’ 1 + II P-1’2 /I2 II n II (134 

Similar bounds can also be obtained in terms of the triangular decomposition 
P = LTL of P rather than P-lJ2. In principle these bounds can be computed. 
In practice, it is extremely inconvenient to form the matrix P-lj2 (or the triangular 

* We may always carry out a diagonal transformation to make the diagonal elements of N 
unity. The following discussion is therefore valid even when the normalization of the +i is not 
known exactly. 
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matrix L) merely to obtain this bound, and we derive below a much more con- 
venient bound. We merely note here that the magnitude of this bound may be very 
much larger than that given by (10) for the orthogonal case, since we may well 
have jl ZF1i2 11 > 1. Thus Eq. (13) makes specific the practical observation that 
truncation errors are minimized by using an orthogonal basis. 

An alternative bound on the truncation errors. We now look at an alternative 
approach which leads to bounds on the eigenvalues h of 2, but which are easier 
to compute than (13). We note that a valid variational estimate A, of X is given for 
any M-vector c by 

h,(c) = c+Hc/c+Nc. (14) 

The eigenvalue equation (4) is in fact relevant only as a way of choosing an 
optimum vector c = a. We therefore accept as the best available choice of c the 
vector b derived from the computed form (7) of (5), and define A, by 

h, = b+Hb/b+Nb. (15) 

Then A, is a variational estimate of A, and in fact represents an upper bound 
to the lowest eigenvalue of A/. We derive a simple bound for the difference A, - A, . 
We write 

h, = b+(H + h)b/b+(N + n)b 

and obtain 
h, - X, = b+(h - h,n)b/b+Pb, 

where, as before, P is the computed normalization matrix 

(16) 

(17) 

P=N+n 

We solve (17) for A, to obtain 

X, - h, = (b+hb - h,b+nb)/(b+Pb - b+nb) (18) 

Equation (18) forms the basis of our bound. In general, b will be normalized 
so that 

b+Pb = 1 (19) 
and with this condition we have 

I AC - b / 9 11 b 11’ ‘I h ‘I ’ ’ A’ ’ ‘I “I 1 _ II b Jj2 ,, n ll provided that (I b II2 I/ n 11 < 1 (20) 

This bound on the round-off errors in h, is very simple to compute, and in 
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general is much less pessimistic than (13); for instance, (20) may be used to derive 
a rigorous bound on the eigenvalues h of Z even if the errors of the computation 
are so large that the computed normalization matrix P = N + n is not positive 
definite, so that P-It2 does not exist. 

The bound can be improved somewhat if some information about A, is available. 
For example, we have, from (17) with normalization (19) 

If we can be sure that A, is negative, we may write ( A, I = -A, and obtain 

J4, G @, + II b II211 h llM1 + II b II211 n II) provided A, < 0 (21) 

This result does not assume /I b II2 (/ n 11 < 1. We compare this with the weaker 
result obtained from (20) if no such assumption is made, 

h < A, + II b II2 {II h II + (I hc I - 4) II n III Yl 1 - II b II2 II n II 

III. OPTIMIZED BOUNDS INCLUDING ROUNDOFF ERRORS 

The bounds (21) and (22) on A, represent also bounds on the eigenvalues X of X, 
since we have for any vector b 

The Rayleigh-Ritz procedure as defined by (7) leads to a choice of the vector b 
which minimizes, not A, but the computed AC . If round-off errors are significant, 
the bounds (22) (say) for A, will differ significantly from A, , and in this case it is 
clear that the choice of b given by Eq. (7) may not be optimal. Rather, we should 
try to choose a vector b which minimizes the bounds (21) or (22). These bounds are 
not simple in structure in their detailed dependence on b, and a direct minimization 
in the M-dimensional space of the components of b is hardly a practical procedure. 
We give here an indirect approach. We note that the contribution ) A, - A, / 
of the round-off errors to the bounds on A, depends directly on the norm I/ b I( 
of the vector b. This norm is limited by the condition (19). For instance, if we 
choose the 2-norm I/ b iI2 = btb, we have the restriction 

%,l’ax (P) G II b II2 < h& (PI, 

where bd’), BIG’) are the eigenvalues of maximum and minimum modulus 
of the matrix P. In many calculations the bounds (23) are very broad, and the 
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eigenvector of (7) may have a very large norm. This suggests that improved 
bounds on A, might be obtained if we search for the minimum of the Rayleigh 
quotient (16) subject to a restriction on the norm of the vector b. We shall then 
obtain an inferior estimate of A, , but a better round-off estimate; and by suitably 
choosing the maximum norm allowed for b, we can optimize the final bound 
obtained on A,, . 

We give here a practical procedure for this process. We search for the minimum 
of (16) subject to the restriction on b 

bfblb+Nb = 01~. 

That is, for the minimum of the functional 

2% [ 
b+Hb 

b+Nb - (25) 

This minimum leads to Eq. (24), and the double eigenvalue equation 

(B, - yN)b = 0, (26) 

where 
B, = H-pI+p2N (27) 

The suggested procedure is to solve Eqs. (24) and (26) for a given choice of 01~; 
the resulting vector b is then used in (16) and (21) to bound A, , and 01~ varied to 
yield the best such bound. In general this will yield an improvement over the 
Rayleigh-Ritz choice of b, since a value of 01~ always exists for which (25) yields 
the same solution as (16). In the numerical example given in the next section, the 
gain in accuracy is considerable. 

Finally, we consider the solution of (27). We write the following iterative scheme: 

Bn = N-4, 
[Bn - 3/n+JWn+~ = 0, (28) 

t-h+1 = l-%2 -I &l, 

[B, - y,N]C, = [a2N - Z]b, , (29) 

6 n = bn+(a2N - Wn 
2b,+(Z - a2N)C,, 

Equation (29) is derived by differentiating (26) with respect to p and setting 
ab/ap = C. The scheme (28)-(30) has been found to work well in practice. It 
has the advantage that the iterations involve only the same type of operations as 
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the original Rayleigh-Ritz method. A simpler method of solution, which also 
works well in practice, is to use inverse interpolation of (24) in p. 

Iv. A NUMERICAL EXAMPLE 

To illustrate the use of the bounds of Section II and the technique of Section 111, 
we give a numerical example in which round-off errors are indeed significant. 
The example involves the calculation of a lower bound on the energy of the 
positronium ion e+e-e-. This is a loosely bound system with an energy (in atomic 
units). 

X = -0.262000 a.u. 

We denote by H the three-body Hamiltonian including the Coulomb forces. 
Then if { is the energy of the first-excited state, which in this case consists of a 
free electron and a positronium atom, 

5 = -0.25 a.u., 

we may derive a lower bound in the following way. We write 

y = l/(h - [), 9 = H - t; 

Then the wavefunction J$ for the system satisfies 

(A? - yLP”)lj = 0. 

(31) 

(32) 

Equation (32) has the general form of (1). A lower bound h, for h follows from 
the upper bound (2) for y, and the procedures of this paper are applicable. We 
write a trial function $T for # in the form 

~LT = fj ai& 
L=l 

The functional form (33), and the numerical results given here, derive from a 
general purpose program written for such calculations (3). The parameter S 
is an overall scale function which is varied to yield the best bound, while Z* has 
here been assigned the value 2. 

Figure 1 shows the raw results from a calculation with such a trial function, 
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and plots the lower bound As against the value of the scale factor S, for a 22 and 
a 50-term trial function. We see that the 22-term results are apparently weil- 
behaved, but that there are clearly large errors inherent in the 50-term calculation. 
These errors derive from the finite accuracy of the calculation of the matrix ele- 
ments of L and of L2, and illustrate the disastrous way in which these errors can 
build up. 

- 0.260 

- 0.265 

- 0.270 

- 0.275 

- 0.260 

FIG. 1. Computed lower bounds on the positronium ion ground state. The ordinate gives the 
scale factor S defined in Eq. (33). T’he exact eigenvalue is shown as a dotted line. The results 
for a 50-term function show the presence of large round-off errors which cause the computed 
eigenvalue to rise above the exact result. 

The estimated relative accuracy of these elements in this calculation is lo-lo 
for L, but only 1O-6 for L2. We thus have, for the error matrices h, 12 in Eq. (21), 

II h II < lo-loll L I/, 

II n I/ < 1o-6ll L2 II, (34) 

where L2 is the A4 x A4 matrix of dp2, and not (L)2. 
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Curve II in Fig. 2 shows the modified bound for h resulting from the inclusion 
of the round-off errors by the use of Eq. (21), for the M = 50 result. The results 
for M = 22 are not plotted, but show that for this case the round-off errors are 
indeed very small. We see that, although the round-off errors are very large for 
some values of the scale factor 9, we cayl derive a useful and reliable bound 
provided that their effect is included in this bound. 

- 0.265 

- 0.270 

- il.275 

FIG. 2. Raw and corrected lower bounds for the positronium ion. Curve I: uncxxrected for 
roundoff errors; curve II: corrected bound from IZq. (21); curve III: improved lower bounds 
derived by constraining the norm of the vector a using the iterative scheme (28)-(30). 

Finally, curve III in Fig. 2 shows the improved bound which results from 
choosing the expansion coefficients a in the way suggested in paragraph 3. These 
values were obtained using the iterative scheme (28)-(30); convergence of the 
scheme was quite rapid, usually five or six iterations being sufficient to reduce 
the norm of a by the chosen factor 01 from its initial value for p = 0. We see that 
the procedure results in this instance in a modest but useful gain in the lower 
bound. 
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V. EXTENSION TO OTHER VARIATIONAL SCHEMES 

We have restricted the discussion of this paper to the eigenvalue problem and the 
Rayleigh-Ritz variation principle; however, the method of Section III for bounding 
the round-off errors can be applied to a number of other variation principles for 
linear-operator equations in which expansions of the form (3) are made for the 
solutions. We illustrate these extensions by considering one, the Kohn variation 
principle for scattering states. The principle considers a trial function of the form 

where $. is a normalized scattering part whose asymptotic form defines a trial 
phaseshift tan &. Then the variation principle for an energy E = k2 (we set 
2mpi2 = l), 

tan 8” tan & 
- = - - k k s #,(H - E)$, dt, 

takes the form 

tan 8” tan 6. 
- = 2 - [a+L, + a+L, + L,+a + L,,] k k (35) 

where 

As before we assume that the computed L, L, , L,, have error matrices I, I,, 
I,, . Then we derive immediately a bound for the difference between the computed 
and the exact values of tan 6,) for the given vector a, 

I tan 8~ - tan hale I d kill Ill II a II2 + 211 a II II 1, II + I 4, Il. (36) 
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APPENDIX. MATRIX AND VECTOR NORMS 

A matrix norm is a positive real number associated with a matrix satisfying the 
condition 

II AA II = I h I II A II, 
II A II + II 4 3 II A + Bll, 

II A II II B II 3 II AB II, 
II 0 II = 0. 

In this definition we regard a column vector as an (n x 1) matrix. These prop- 
erties lead directly to the results used in this paper. A number of specific norms 
are also discussed in (1). Of these, that leading to the sharpest bounds is the 
socalled infinity norm /I llm , 

For a vector, this yields 

II x Ilm = max I xi I. z 
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